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Abstract 
In this paper, it is argued that for the detection of a stochastic trend in a time series it is advisable to 
use the detrended series rather than the original series or the differenced series. While the examination 
of the original series is clearly impaired by the possible presence of a deterministic trend and dealing 
with the differenced series comes along with an increased variability, trend removal is a data 
dependent transformation and is prone to overfitting. However, it is shown that the latter disadvantage 
can be overcome by simply omitting the lowest Fourier frequency when the analysis is carried out in 
the frequency domain. This issue is illustrated using climatological, macroeconomic and financial time 
series. The results of an extensive simulation corroborate the usefulness of this approach for different 
sample sizes and different types of long-term dependence and short-term dependence.      

 
Keywords: Nonstationarity, stochastic trend, global surface temperature, GDP per capita, 
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1. Introduction 

Depending on the type of a time series, there are different questions that may arise when the 
series exhibits an apparent trend. In the case of a climatological time series (such as a series of 
temperature measurements taken over a long period of time), the key question is whether this 
trend is genuine or not. The nature of the trend (stochastic or deterministic) is of minor 
importance. Any trend is evidence of climate change (see, e.g., Mangat and Reschenhofer, 
2020). In contrast, for a macroeconomic time series (such as the GDP) it makes a huge 
difference whether its long-term behavior is governed by a random walk or by a simple linear 
trend. In the former case, the effect of a shock on the future level of the series remains 
constant and does not decrease as the time horizon increases, whereas in the latter case, the 
effect is only temporary and vanishes eventually (see, e.g., Christiano and Eichenbaum, 1990; 
Hauser et al., 1999). Of course, it is also possible that a trend can best be described by a 
combination of a stochastic and a deterministic trend. There are two standard options to 
produce evidence of the existence of a stochastic trend when the possibility of a deterministic 
trend cannot be ruled out. We can either fit a deterministic trend to the time series and search 
for remaining traces of the stochastic trend in the trend residuals or we can take first 
differences and take a closer look at the differenced series. Inference on the first differences is 
generally considered safer than inference on the trend residuals because differencing is a 
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simple, fully deterministic transformation whereas the way how the original observations are 
transformed into trend residuals depends on the data.   

In this paper, it is argued that trend removal may still be the better option because it 
preserves more of the original information and the negative effect of possible overfitting can 
easily be controlled in the frequency domain by omitting the lowest Fourier frequency. 
Section 2 discusses this issue using a climatological as well as a macroeconomic time series. 
For illustration, a financial time series is also included because we can assume that it has only 
a stochastic trend. The knowledge of the nature of the trend of this time series allows us to 
study the effect of the respective transformations without interference from an actual 
deterministic trend. In Section 3, the results of an extensive simulation study are presented. 
Section 4 concludes.   
 

2. Empirical study 

We investigate three long annual time series, the Earth’s global surface temperature from 
1850 to 2020 (� � 171�, the UK’s GDP per capita from 1252 to 2018	�� � 767�, and the 
Standard and Poor's 500 index from 1927 to 2020	�� � 94�. The first time series 
(HadCRUT5 dataset; see Morice et al., 2021) was downloaded from the website 
https://sites.uea.ac.uk/cru/data of the Climatic Research Unit (CRU) of the University of East 
Anglia (UEA), the second from the Maddison Project Database (see Bolt and van Zanden, 
2020; Scheidel and Friesen, 2009; Stohr, 2016), and the third from Yahoo Finance. All 
computations were carried out with the free statistical software R (R Core Team, 2018). 

Assuming that a possible deterministic trend in any of these time series is quite smooth 
and can adequately be described by a cubic polynomial (see the first row of Figure 1), we first 
remove this trend and then examine the trend residuals (see the second row of Figure 1) to 
check whether there is still a trend left. If so, we interpret this (positive) finding as evidence of 
a stochastic trend. Analogously, we check whether there is any indication of fractional over-
differencing in the first differences (see the third row of Figure 1). If not, this (negative) 
finding is interpreted as evidence of a stochastic trend because taking first differences usually 
ensures that any smooth deterministic trend is eliminated. These checks will later be 
explained in more detail. But before we get there we carry out some basic analyses.       

For each of the three time series, sample autocorrelations are shown in Figure 2 and 
periodograms in Figure 3. Not surprisingly, the sample autocorrelations of the original series 
decay much slower than those of the trend residuals. In the differenced series, there is either 
no significant autocorrelation left (financial time series) or only short-term negative auto-
correlation (climatological and macroeconomic series). Accordingly, there is always a steep 
increase in the periodogram of the original series (as the frequency approaches zero), which 
may be an indication of a pole in the underlying spectral density. This increase is much less 
pronounced in the case of the trend residuals. Especially remarkable is the downsizing of the 
first periodogram ordinate. The periodogram of the differenced series is either flat (financial 
series), which is consistent with white noise, or has a power deficiency in the low frequency 
range (climatological and macroeconomic time series). In the case of the climatological time 
series, we might even suspect that the underlying spectral density vanishes at frequency zero.     

For a more thorough examination of the long-term behavior of the three time series, we 
carry out a log periodogram analysis, which is based on the spectral representation 
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��� � � ���������                                                        (1) 

of the variance of a stationary process �. A pole of the spectral density � at frequency zero 
can be compatible with stationarity provided that  � �������� � ∞                                                        (2) 

for some small value of �. To assess the integrability of �, we use simple functions of the 
form ����� � ��                                                            (3) 

as benchmarks, which are integrable if � � �1. Plotting  log���� against log���, we obtain 
a straight line with slope �, which we can compare with the slope of the scatter plot obtained 
by plotting log periodogram ordinates against log Fourier frequencies in the neighborhood of 
frequency zero. As expected, the latter slope is less than �1 for all three time series (see the 
first row of Figure 4), which indicates nonstationarity of the original series. However, the 
same is also true for the trend residuals (see the second row of Figure 4). Nonstationarity after 
the removal of a possible deterministic trend is an indication of the presence of a stochastic 
trend. A slope less than 1 in the differenced series corresponds to a slope less than �1 before 
differencing, hence the third row of Figure 4 corroborates our suspicion of a stochastic trend. 
Remember, taking first differences is a proven method to eliminate a deterministic trend. 
Concluding we may state that all three times series are integrated of order � � 0.5, the 
climatological series with 0.5 � � � 1, the macroeconomic series with � � 1, and the 
financial series with � � 1. 

A noticeable anomaly in the log periodograms of the trend residuals is the small size of 
the first ordinate. This finding is particularly severe in the case of the financial time series (see 
Figure 4.h), where we can be quite sure that this anomaly is solely due to an unnecessary 
effort to remove a non-existing deterministic trend. However, there seems to be a simple 
remedy. All we have to do is omit the first Fourier frequency from the log periodogram 
analysis. Figures 4.b and 4.e show that this measure works also for much larger sample sizes. 
To investigate this matter thoroughly, we will carry out an extensive simulation study in the 
next section.   
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Figure 1: Climatological, macroeconomic, and financial time series 
1st column: Global surface temperature from 1850 to 2020 (HadCRUT5) 
2nd column: log UK GDP per capita from 1252 to 2018 (Maddison Project Database) 
3rd column: log Standard and Poor's 500 index from 1927 to 2020 (source: Yahoo Finance) 
1st row: Fitted cubic trend (red line)   
2nd row: Deviations from cubic trend (the red line represents the mean) 
3rd row: First differences (the red line represents the mean) 
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Figure 2: Sample autocorrelations   
1st column: Global surface temperature from 1850 to 2020 (HadCRUT5) 
2nd column: log UK GDP per capita from 1252 to 2018 (Maddison Project Database) 
3rd column: log Standard and Poor's 500 index from 1927 to 2020 (source: Yahoo Finance) 
1st row: Sample autocorrelations of original time series   
2nd row: Sample autocorrelations of deviations from cubic trend  
3rd row: Sample autocorrelations of first differences   
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Figure 3: Periodograms 
1st column: Global surface temperature from 1850 to 2020 (HadCRUT5) 
2nd column: log UK GDP per capita from 1252 to 2018 (Maddison Project Database) 
3rd column: log Standard and Poor's 500 index from 1927 to 2020 (source: Yahoo Finance) 
1st row: Peridograms of original time series   
2nd row: Periodograms of deviations from cubic trend  
3rd row: Periodograms of first differences   
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Figure 4: Log periodogram plotted against log frequency  
1st column: Global surface temperature from 1850 to 2020 (HadCRUT5) 
2nd column: log UK GDP per capita from 1252 to 2018 (Maddison Project Database) 
3rd column: log Standard and Poor's 500 index from 1927 to 2020 (source: Yahoo Finance) 
1st row: Log periodogram regression for original time series (slope of gray baselines: -1)  
2nd row: Log periodogram regression for deviations from cubic trend (slope of lines: -1) 
3rd row: Log periodogram regression for first differences (slope of lines: 1)   
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3. Simulations 

In our simulation study, we use fractionally integrated AR(1) processes  �� � �1 � ������1 � ������                                              (4) 

(Granger and Joyeux, 1980; Hosking, 1981) with � � �0.3, 0, 0.3, � � 0.2, 0.4, 0.6, 0.8, 1, 
and ��� � 1. In each case, we generate 1000 realizations of length � � 100, 500. For each 
realization, the periodogram  ����� � ���� �∑ ������������ ��                                              (5) 

of the residuals obtained by fitting a cubic trend is calculated at the first � � �1.5√�� Fourier 
frequencies �� � 2��/�, � � 1,… , �. In Figures 5 and 7, the log means over all realizations 
as well as the logs of the first and third quartiles are plotted against the log frequencies for the 
sample sizes 100 and 500, respectively. Analogous figures are produced for the first 
differences (see Figures 6 and 8). Straight lines with slope �2� (�2� � 2 in the case of first 
differences) are used as benchmarks because the spectral density  ���� � ���� �1 � ���������1 � ��������

                                      (6)  

of the process (4) can in the neighborhood of frequency zero be approximated by   

���� � ��1 � �������� � � �2sin �������� � �|�|���,                         (7)                                 

where      � � ���� |1 � �|��.                                                     (8)  

The slopes of the scatterplots of the log means are, by and large, consistent with the 
values �2� and �2� � 2, respectively, expected for the respective data generating processes. 
However, in the case of the trend residuals, this is only true when the first Fourier frequency 
is omitted. Minor distortions at this frequency occur also in the case of first differences. 
Fortunately, they are a lot less severe. But this does not mean that taking first differences is 
the better option. Looking at the first and third quartiles, we see that the spread relative to the 
slope is much larger in the case of the first differences. Furthermore, the omission of (at least) 
the first Fourier frequency can also be justified by distributional considerations. Because of 
the irregular behavior of the spectral density in the neighborhood of frequency zero, the 
standard asymptotical results for the periodogram can only be obtained when frequencies too 
close to zero are excluded. Indeed, Künsch (1986) showed that the ratios �����/�����, � � � � 1,… ,� � � are asymptotically i.i.d. standard exponential provided that �� �1�/√� → ∞ and �� � ��/� → 0. 
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Figure 5: Log periodogram analysis of the trend residuals obtained by fitting a cubic trend to a 
sample of size � � 100 from an integrated AR(1) process with  � � �0.3 (1st column), � � 0 (2nd column), � � 0.3 (3rd column) and with  � � 0.2 (1st row), � � 0.4 (2nd row), � � 0.6 (3rd row), � � 0.8 (4th row), � � 1 (5th row). The blue lines represent means over 
1000 realizations. The pink lines connect first and third quartiles. The gray baselines have 
slope �2�.  
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Figure 6: Log periodogram analysis of the first differences of a sample of size � � 100 from 
an integrated AR(1) process with  � � �0.3 (1st column), � � 0 (2nd column), � � 0.3 (3rd 
column) and with  � � 0.2 (1st row), � � 0.4 (2nd row), � � 0.6 (3rd row), � � 0.8 (4th row), � � 1 (5th row). The blue lines represent means over 1000 realizations. The pink lines 
connect first and third quartiles. The gray baselines have slope �2� � 2.  
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Figure 7: Log periodogram analysis of the trend residuals obtained by fitting a cubic trend to a 
sample of size � � 500 from an integrated AR(1) process with  � � �0.3 (1st column), � � 0 (2nd column), � � 0.3 (3rd column) and with  � � 0.2 (1st row), � � 0.4 (2nd row), � � 0.6 (3rd row), � � 0.8 (4th row), � � 1 (5th row). The blue lines represent means over 
1000 realizations. The pink lines connect first and third quartiles. The gray baselines have 
slope �2�.  
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Figure 8: Log periodogram analysis of the first differences of a sample of size � � 500 from 
an integrated AR(1) process with  � � �0.3 (1st column), � � 0 (2nd column), � � 0.3 (3rd 
column) and with  � � 0.2 (1st row), � � 0.4 (2nd row), � � 0.6 (3rd row), � � 0.8 (4th row), � � 1 (5th row). The blue lines represent means over 1000 realizations. The pink lines 
connect first and third quartiles. The gray baselines have slope �2� � 2.  
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4. Discussion 

The estimation of the fractional differencing parameter � can be seriously impaired by the 
presence of a deterministic trend. It may therefore be prudent to either remove a possible 
deterministic trend or take first differences before the estimation. The estimate obtained from 
the transformed series can then be used to draw conclusions about the size of the parameter 
for the original time series. An advantage of differencing is that this transformation does not 
depend on the data and a disadvantage is that the variation relative to the size of  � is usually 
large in the case of the differenced series. In this paper, it is argued that trend removal is the 
better option because the potentially dangerous effects of fitting a deterministic trend to the 
original time series can easily be controlled in the frequency domain by omitting the first 
Fourier frequency. Examining the log periodograms of climatological, macroeconomic and 
financial time series graphically, we always conclude that the original time series is integrated 
of order � � 0.5. The results of an extensive simulation study show that the omission of only 
one Fourier frequency is sufficient for sample sizes typically occurring in practice and various 
types of long-term dependence and short-term dependence. 

Instead of the graphical inspection of the log periodogram, we could clearly also carry 
out a log periodogram regression (Geweke and Porter-Hudak, 1983) and thereby obtain a 
unique estimate and possibly even a confidence interval. However, this may create a false 
sense of security because the estimation of � is an ill-posed estimation problem (see Pötscher, 
2002). Inference in a strict sense is therefore not possible unless extremely strong restrictions 
are imposed which are implausible in most applications.  

Our approach can easily be extended to the case of more than one time series. For 
example, in the case of two time series � and �, we could check whether there is a 
cointegrating relationship by looking at the log periodogram of the residuals obtained by 
regressing  ��  on �� and a deterministic trend (in the simplest case: � � ���. Of course, it 
would again be required to omit the first Fourier frequency in order to avoid possible 
distortions caused by the trend removal.  
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